
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)

05-17-2001

2. REPORT TYPE

Final
4. TITLE AND SUBTITLE

A Prototype Formal Methods Environment

6. AUTHOR(S)

Teitelbaum, Ray(Tim)

3. DATES COVERED

07-01-1996 to 06-30-97; May 2001
5a. CONTRACT NUMBER

N00014-96-0364
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GrammaTech, Inc.
317 N.Aurora Street
Ithaca, NY 14850

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DCMAO
615 Erie Blvd West
Syracuse NY 13204-2408

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR/DCMAO
11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

12. DISTRIBUTION/AILABILITY STATEMENT

No Restrictions

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Synthesizer Generator is a system for generating language-based editors and interfaces from formal grammatical specifications.
This project aimed to evaluate the utility of the Synthesizer Generator for building professional-quality user interfaces for
formal-methods tools. As a test case, we used the Synthesizer Generator to prototype a new user-interface for the Cornell University's
NuPRL theorem proving system, and delivered it to Cornell.

20010611 039
15. SUBJECT TERMS
User Interface, Formal Methods, Synthesizer Generator, NuPRL

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT c. THIS PAGE

U U

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

Ray(Tim) Teitelbaum
19b. TELEPHONE NUMBER (Include area code)

607-273-7340 Ext.25
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

Summary

The Synthesizer Generator is a system for generating language-based editors and
interfaces from formal grammatical specifications. This project aimed to evaluate the
utility of the Synthesizer Generator for building professional-quality user interfaces for
formal-methods tools. As a test case, we used the Synthesizer Generator to prototype a
new user-interface for the Cornell University's NuPRL theorem proving system, and
delivered it to Cornell.

The project had two primary co-objectives: (1) the development and delivery of a tool
useful for NuPRL, and (2) prototyping generic facilities reusable for other applications.
The prototype NuPRL editor addressed term editing and proof editing. We successfully
demonstrated that the Synthesizer Generator could replicate the essential behavior of the
handcrafted NuPRL user-interface. The distributed system structure prototyped in this
project, in which the editor ran as a separate process and interacted with NuPRL by
message passing, substantially influenced the architecture subsequently adopted by
NuPRL.

The project began on 1 July 1996 and ran through 30 June 97. It followed completion of
an ONR SBIR Phase I project entitled "User Interfaces for Rule-Based Formal Methods
Environments", and contributed to the subsequent ONR SBIR Phase II project of the
same name. The results of that SBIR project have since been commercialized as Ada-
ASSURED for Windows and CodeSurfer®.

Results
Historically, most formal-methods systems have had minimal "glass teletype" command-
line interfaces. Not surprisingly, formal-methods specialists have focused on their logics
while providing the simplest, least-cost interface possible. Many environments have
continued to ignore GUI interfaces and remain based on Emacs. For example, PVS uses
standard Emacs (with a few minor embellishments) for text editing theory files and a
shell window for interacting with the prover's command-line interface [1,2].

The transcript produced by command-line interactions is just a linear sequence of
inanimate "dead" characters; in contrast, active documents consist of "animate"
interacting textual and graphical elements. Interaction via direct manipulation of active
documents, one of the great interface revolutions of the 80's, has not been exploited by
most formal methods systems. They have largely retained a temporal perspective (i.e.,
command sequence) and have not adopted the often more effective spatial perspective
(i.e., active document). This has been true both at coarse granularity, e.g., theory
browsing, and at fine granularity, e.g., term editing.

Fine-grained active documents. Effective editing of fine-grained active documents, e.g.,
language-sensitive term editing, is not easily provided by standard GUI elements.
Rather, it must be laboriously programmed. The Synthesizer Generator, GrammaTech's
commercial technology for generating language-sensitive editors and user-interfaces, is
renowned for its editing support of fine-grained active documents.

Result 1. We continued development of a prototype NuPRL term editor
implemented using the Synthesizer Generator, taking advantage of recent
improvements in the Synthesizer Generator such as Motif GUI elements and a
Scheme-based editor scripting language.

Proofs as documents. Most formal-methods systems do not view a proof as a
hierarchical, editable, browsable document. They have adopted, instead, some form of
goal-stack model in which the only persistent record of a proof is, at best, a linear proof
script — a sequential record of the steps taken to make the proof [3,4]. The process of
trial-and-error proof is viewed as linear "time travel" forward and backward through the
space of partial proof states rather than random access cut-and-paste in a partial proof
document. In contrast to most formal-methods systems, NuPRL [5] has embraced the
proof-as-document concept for years.

Result 2. We prototyped a proof-as-document-style proof editor for NuPRL.

Although options to prototype library browsers and efficient storage mechanisms for
replicated fine-grained objects were not funded, some aspects of the intended work were
eventually addressed under our subsequent SBIR Phase II project, and have now been
commercialized in CodeSurfer®.

References
[1]. The PVS Proof Checker: A Reference Manual (Draft). N. Shankar, S. Owre, and J.

M. Rushby. Computer Science Laboratory, SRI International, Menlo Park, CA, March,
1993.

[2] User Guide for the PVS Specification and Verification System. S. Owre, N. Shankar,
and J. M. Rushby. Computer Science Laboratory, SRI International, Menlo Park, CA,
March, 1993.

[3] HOL: A proof generating system for higher-order logic. M. J. C. Gordon.
In VLSI Specifications, Verification and Synthesis, pages 73-128. Kluwer, 1988.

[4] Constructions: A higher order proof system for mechanizing mathematics, T.
Coquand and G. Huet. In Lecture Notes in Computer Science. Springer-Verlag, 1985.
Volume 203.

[5] Implementing Mathematics with the NuPRL Proof Development System. R. L.
Constable, et. al. Prentice-Hall, Englewood Cliff, N.J., 1986.

